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Dynamics of dark-bright vector solitons in a
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Coupled dark-bright vector solitons are considered in a birefringent fiber, and their dynamics are studied
by the variational approach. The stationary states are analyzed, and it is found that their intensity
distribution depends strictly on the ratio of the group-velocity delay strength to the effective total energy.
Finally, the propagation of the coupled dark-bright vector solitons is investigated by the numerical method.
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Optical solitons in fibers are formed by a balance of
group dispersion and Kerr non-linearity. Numerical sim-
ulation and experiments have demonstrated that solitons
can propagate an extended distance without distortion,
so they may become the ideal message carrier in long dis-
tance communication[1].

Dark solitons propagate in the normal dispersion re-
gion. They have robust features such as low intrinsic
transmission loss, resistance to perturbations, and weak
interaction between neighboring solitons. The amplified
spontaneous emission (ASE) noise in the dark soliton
system is only half of that corresponding to the bright
counterpart. The techniques for generating and detecting
dark soliton pulses have been developed[2], and dynamics
of the dark solitons propagating in an optical fiber ex-
hibiting birefringence have been investigated[3−5].

Optical fibers are birefringent in reality, and pulses
travel along two orthogonal polarizations of the fiber at
slightly different speeds. A technique called polarization-
division multiplexing has been proposed, and this tech-
nique doubles the transmission rate compared with the
launching of pulses along the same polarizations[6,7]. In
fact, theoretical and experimental results show that the
single-wavelength bit-rate capacity of an ultra-long dis-
tance soliton transmission system can be doubled by the
polarization-division multiplexing of orthogonal polariza-
tion solitons, and the capacity can be furtherly increased
by using a combination of polarization and other multi-
plexing (such as time-division multiplexing )[8].

So-called coupled dark-bright vector solitons, where a
bright optical solitary wave exists in a system with de-
focusing nonlinearity because it is trapped within a co-
propagating dark soliton, have some interesting and dis-
tinguishing dynamics different from those of the bright
soliton and the dark soliton. The interaction of dark and
bright solitons may be strongly repulsive. In this case the
cross-phase modulation has an important influence on
both the formation and interaction of the solitons[9,10].
Switching and self-trapping effects on dynamics of the
coupled dark-bright solitons have not been studied in de-
tail yet under the classic theory (such as the variational
approach).

In this letter, the coupled dark-bright vector solitons

are considered in a birefringent fiber, their dynamics are
investigated by the variational approach and the numer-
ical method, and some novel results are obtained.

In a real birefringent fiber with normal dispersion, the
envelop of field can be described by the coupled nonlinear
Schrödinger equation[11,12]
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where u and v are normalized elliptically polarized com-
ponents along two orthogonal directions, respectively.
Z = z/zd, zd = τ2

0 /
∣∣d̄∣∣ and τ = t/τ0. z and t are actual

distance coordinate and time, respectively. τ0, zd, d̄, and
η are the pulse width, the dispersion length, the path-
average dispersion, and the group-velocity delay strength
caused by the birefringence, respectively.

Treating the dark soliton as an effective particle, the
variational approach for the dark soliton can be used. To
adopt Lagrangian variational approach, the dark soliton
wave function u is rescaled to be u exp(jE2Z/4) to re-
move the background wave. The renormalized equation
can be expressed as[9,10]
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We adopt trial functions below as the dark-bright vec-
tor soliton solutions to Eq. (2)

u(Z, τ) = j
E sin θ

2
+

E cos θ

2
tanh[

E

2
(τ +

Δ
2

)],

v(Z, τ) =
E sin θ

2
sech[

E

2
(τ − Δ

2
)], (3)

where θ is the distributing angle, which determines the
depth of the dark soliton and the energy distribution be-
tween two dark-bright vector solitons. Δ is the time
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spacing between two center positions of the two dark-
bright vector solitons. E1(Z) =

∫ ∞
−∞ (E2/4 − |u|2)dτ =

E cos2 θ is the effective energy of the dark soliton without
the background wave, E2(Z) =

∫ ∞
−∞ |v|2dτ = E sin2 θ is

the effective energy of the bright soliton, and the effective
total energy is E = E1 + E2 (a conserved quantity).

In the evolution of the dark-bright vector solitons, the
wave functions u and v retain the functions given by
Eqs. (3), but the distributing angle, the spacing, and the
effective energy of each soliton become functions of the
propagation distance.

The averaged Lagrangian of Eq. (2) can be defined with
the variational approach[13,14]
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where a ≈ 0.21.
The equations of motions for the distributing angle

and the spacing are obtained from the averaged La-
grangian using dL(Z)/dσ − d[dL(Z)/d(dσ/dZ)]/dZ = 0
(σ = Δ, θ), and two important equations are obtained
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We can see that the dynamics of the coupled dark-
bright solitons depend strictly on the group-velocity de-
lay strength and the effective total energy.

The stationary state can be obtained by setting the
distance derivatives in Eq. (5) to zero. The condition for
the stationary state can be obtained as

Δ0 = 0,

(
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where Δ0 and θ0 are the spacing and the distributing
angle of the stationary state.

These features show that the stationary state may ex-
ist when two solitons are of the same central position
(Δ = 0), and the energy may be distributed within both
the dark and bright vector solitons. Figures 1 and 2 are
the intensities (|u|2 and |v|2) of two vector solitons for
the stationary states versus time with different ratios
of the group-velocity delay strength to the effective to-
tal energy, and the distributing angles of the stationary
states are obtained by numerically solving Eq. (6). The
effective total energy is selected as E = 4, and the group-
velocity delay strengths are selected as η = 1.0 (namely,
for η/E = 0.25), 2.0 (namely, for η/E = 0.5), and 4.0
(namely, for η/E = 1.0). We can see the effective in-
tensity distribution of the dark or bright vector solitons
for the stationary states strictly depends on the ratio of
the group-velocity delay strength to the effective total
energy.

Equation (1) can be solved numerically by using the
split-step Fourier algorithm to study the dynamics of
the coupled dark-bright vector solitons. The simula-
tion parameters are: the soliton pulse width τ0 = 10
ps, the path-average dispersion of the birefringent fiber
d̄ = −1.00 ps2·km−1, and the dispersion length is about
100 km corresponding to the average dispersion. Figure
3 is the normalized soliton intensity versus the propaga-
tion distance. The initially input polarized components
(soliton pulses) are given by Eq. (3), the initial dis-
tributing angle is θ = π/4 and the initial time spacing

Fig. 1. Intensity (|u|2 ) of the dark soliton for the stationary
states versus time with E = 4. Solid line: η/E = 0.25; dashed
line: η/E = 0.5; dotted line: η/E = 1.0.

Fig. 2. Intensity (|v|2) of the bright soliton for the stationary
states versus time with E = 4. Solid line: η/E = 0.25; dashed
line: η/E = 0.5; dotted line: η/E = 1.0.
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Fig. 3. Normalized vector soliton intensity versus propaga-
tion distance with E = 4. (a) η/E = 0.05; (b) η/E = 0.25;
(c) η/E = 0.5; (d) η/E = 1.0.

is Δ = 0. The effective total energy is selected as E = 4,
and the group-velocity delay strengths are selected as
η = 0.2 (namely, for η/E = 0.05), η = 1.0 (namely,
for η/E = 0.25), 2.0 (namely, for η/E = 0.5), and 4.0
(namely, for η/E = 1.0). We can see that the bire-
fringence causes the energy transfer between the bright
and dark solitons, leading to the disintegration of the
bright soliton and the submergence of the dark soliton.
The disintegration distance or the submergence distance,
which is defined as the propagating distance until disin-
tegration or submergence, depends strictly on the ratio
of the group-velocity delay strength to the effective to-
tal energy. For example, the stability of the vector soli-
ton propagation is alike when the ratio is small enough
(such as η/E < 0.05) under the given effective total en-
ergy (E = 4). When the ratio becomes large (such as
η/E > 0.05), the stability of the vector soliton propaga-
tion is reduced. Furthermore, the effective propagation
distance of the soliton system is determined by the prop-
agation of the bright soliton because the dark soliton has
the longer submergence distance than the disintegration
distance of the bright soliton. So the performance of the
dark-bright vector soliton system is determined by the
bright soliton because the dark soliton has robust fea-
tures.

In the bright or dark soliton system with the birefrin-
gence, we find that the birefringence causes change of
the time relative displacement between normalized ellip-
tically polarized components, which leads to the disinte-
gration of the bright soliton or the submergence of the
dark soliton[11,12]. We can see the effects on the propa-
gation of the coupled dark-bright vector solitons also are

principally caused by the time relative displacement be-
tween normalized elliptically polarized components in the
evolution of the dark-bright vector solitons, which causes
the energy transfer between the bright and dark solitons.
The effecting mechanism is that the birefringence causes
the oscillation of the soliton central position, and the
large birefringence may lead to the stochastic dynamics
of the oscillation, so the elliptically polarized components
take place disaccord along two orthogonal directions in
the birefringent fiber[15].

In summary, the coupled dark-bright vector solitons
are considered in a birefringent fiber, and their dynam-
ics are investigated by the variational approach. The
stationary states are discussed, and their intensity distri-
bution depends on the ratio of the group-velocity delay
strength to the effective total energy. The propagation of
the coupled dark-bright vector solitons is investigated by
the numerical method, their dynamics are analyzed, and
the effecting mechanism of the birefringence is demon-
strated.
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